Star

Cosma Home > Communication > Knowledge > Realm > Physical > Universe > Planetary System > Star

Spotlight


Related

Pages

Physical Realm
Universe Astronomical Instrument
Galaxy Milky Way, Andromeda
Planetary System Star, Brown Dwarf, Planet, Moon

Solar System Sun
Terrestrial Planet Mercury, Venus, Earth (Moon), Mars
Asteroid Belt Ceres, Vesta
Jovian Planet Jupiter, Saturn, Uranus, Neptune
Trans-Neptunian Object
Kuiper Belt Pluto, Haumea, Makemake
Scattered Disc Eris, Sedna, Planet X
Oort Cloud Etc. Scholz’s Star
Small Body Comet, Centaur, Asteroid

Posts

  • Touch the Sun (12/6/2019) - Remember how Icarus wanted to touch the Sun, but met his demise instead? Well, scientists at NASA wanted to touch the Sun too, but unlike Icarus, they succeeded! Better yet, they are beginning to share what they learned by doing it! Before we get into all of that, let’s go back and start at the … Continue reading Touch the Sun
  • Halloween@NASA (10/31/2019) - The folks at NASA love Halloween, and they do something to celebrate every year. For example, the engineers at NASA Jet Propulsion Lab have been holding a pumpkin carving contest for almost a decade, and stories about their ingenuity invariably make it into the news. Here’s a video from Wired about their 2016 competition. Here’s … Continue reading Halloween@NASA
  • Get Lost in Space! (9/14/2018) - Way back in August, in anticipation of the start of a new school year, I set out to update the pages on this site related to space. Those pages tend to be popular among the teachers and students who use Cosma, and I happen to enjoy updating them, too. It sounded like a short, fun … Continue reading Get Lost in Space!
  • Milky Way Lost & Found (8/15/2018) - Have you seen the Milky Way? You may think that you have, but are you sure? Unless you live in an extremely remote area, or you’ve visited one, then you probably haven’t seen our own galaxy, the Milky Way, very well, or at all. Worse yet, you may not even realize that it’s missing. The … Continue reading Milky Way Lost & Found
  • Umbraphiles (8/20/2017) - umbraphile : One who loves eclipses, often travelling to see them. — Wiktionary Yes, this is that obligatory post about “The Solar Eclipse” (NASA, Wikipedia). Of course, there had to be one — eclipses really are just too cool to ignore. You’ve already been bombarded with explanations of the science and history of eclipses, but … Continue reading Umbraphiles
  • TRAPPIST-1 (2/23/2017) - You’ve probably heard that NASA has found a trove of “Earth-like” planets circling the TRAPPIST-1 system roughly 40 light years away, but just in case you haven’t, here’s a short 2 minute AP video about the discovery. Here’s another video from NASA/JPL with more explanation. Most entertainingly, here’s a 360° YouTube Video published by NASA/JPL … Continue reading TRAPPIST-1

Resources

These are organized by a classification scheme developed exclusively for Cosma. More…

General

Portal

Stars Reference (National Geographic)
Star Portal (Wikipedia)

Dictionary

star : a self-luminous gaseous spheroidal celestial body of great mass which produces energy by means of nuclear fusion reactions — Webster

OneLook, Free Dictionary, Wiktionary, Urban Dictionary

Thesaurus

Roget’s II (Thesaurus.com), Merriam-Webster Thesaurus, Visuwords

Encyclopedia

Star is a luminous sphere of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the stars in the Universe, including all stars outside our galaxy, the Milky Way, are invisible to the naked eye from Earth. Indeed, most are invisible from Earth even through the most powerful telescopes.

For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star’s interior and then radiates into outer space. Almost all naturally occurring elements heavier than helium are created by stellar nucleosynthesis during the star’s lifetime, and for some stars by supernova nucleosynthesis when it explodes. Near the end of its life, a star can also contain degenerate matter. Astronomers can determine the mass, age, metallicity (chemical composition), and many other properties of a star by observing its motion through space, its luminosity, and spectrum respectively. The total mass of a star is the main factor that determines its evolution and eventual fate. Other characteristics of a star, including diameter and temperature, change over its life, while the star’s environment affects its rotation and movement. A plot of the temperature of many stars against their luminosities produces a plot known as a Hertzsprung–Russell diagram (H–R diagram). Plotting a particular star on that diagram allows the age and evolutionary state of that star to be determined.

A star’s life begins with the gravitational collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium and trace amounts of heavier elements. When the stellar core is sufficiently dense, hydrogen becomes steadily converted into helium through nuclear fusion, releasing energy in the process. The remainder of the star’s interior carries energy away from the core through a combination of radiative and convective heat transfer processes. The star’s internal pressure prevents it from collapsing further under its own gravity. A star with mass greater than 0.4 times the Sun’s will expand to become a red giant when the hydrogen fuel in its core is exhausted. In some cases, it will fuse heavier elements at the core or in shells around the core. As the star expands it throws a part of its mass, enriched with those heavier elements, into the interstellar environment, to be recycled later as new stars. Meanwhile, the core becomes a stellar remnant: a white dwarf, a neutron star, or if it is sufficiently massive a black hole.

Binary and multi-star systems consist of two or more stars that are gravitationally bound and generally move around each other in stable orbits. When two such stars have a relatively close orbit, their gravitational interaction can have a significant impact on their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy. — Wikipedia

Stars (Eric Weisstein’s World of Astronomy, Wolfram Research)
David Darling’s Internet Encyclopedia of Science
Encyclopædia Britannica

Introduction


Guide to Stars & Galaxies (Telescope.org)

Search

Stars (Wolfram Alpha)

Science

Stellar Astronomy is the study of stars and stellar evolution, and it is fundamental to our understanding of the Universe. The astrophysics of stars has been determined through observation and theoretical understanding; and from computer simulations of the interior. Star formation occurs in dense regions of dust and gas, known as giant molecular clouds. When destabilized, cloud fragments can collapse under the influence of gravity, to form a protostar. A sufficiently dense, and hot, core region will trigger nuclear fusion, thus creating a main-sequence star. — Wikipedia



Preservation

History

History of Stars (Universe Today)

Quotation

Quotations Page

Library

WorldCat, Library of Congress, UPenn Online Books, Open Library

Participation

Education


Stars & Star Clusters (Ask an Astronomer, Cornell University)
Stars (Cosmos4Kids)

Course



Crash Course Astronomy (YouTube)

OER Commons: Open Educational Resources

Community

News

Science Daily, Phys.org, NPR Archives

Book

ISBNdb

Government

Document

USA.gov

Expression

Fun


Poem

OEDILF: The Omnificent English Dictionary In Limerick Form

Music

Song Lyrics

returntotop

More…

Stars News -- ScienceDaily News about Stars. Read science articles and see images on the birth of monstrous stars, brown dwarfs and red giants. Consider stellar evolution and more.

  • Blast from the past
    on November 24, 2020 at 5:29 pm

    Astronomers have discovered that CK Vulpeculae, first seen as a bright new star in 1670, is approximately five times farther away than previously thought. This makes the 1670 explosion of CK Vulpeculae much more energetic than previously estimated and puts it into a mysterious class of objects that are too bright to be members of the well-understood type of explosions known as novae, but too faint to be supernovae.

  • Blue Ring Nebula: 16-year-old cosmic mystery...
    on November 18, 2020 at 7:16 pm

    Astronomers have solved the 16-year-old mystery surrounding the Blue Ring Nebula - an unusual, large, faint blob of gas with a star at its center. This object is unlike any they'd ever seen before in our Milky Way galaxy. The team has discovered the nebula appears to be the first known example of a merged star system at this stage.

  • Birth of magnetar from colossal collision...
    on November 12, 2020 at 6:46 pm

    Researchers spotted a short gamma ray burst 10 times brighter than predicted. The mysterious brightness might signal the birth of a rare magnetar, formed from two neutron stars merging, which has never before been observed.

  • Black hole or no black hole: On the outcome of...
    on November 10, 2020 at 6:32 pm

    A new study investigates black-hole formation in neutron star mergers. Computer simulations show that the properties of dense nuclear matter play a crucial role, which directly links the astrophysical merger event to heavy-ion collision experiments at GSI and FAIR. These properties will be studied more precisely at the future FAIR facility.

  • About half of Sun-like stars could host rocky,...
    on November 6, 2020 at 1:27 pm

    According to new research using data from NASA's retired planet-hunting mission, the Kepler space telescope, about half the stars similar in temperature to our Sun could have a rocky planet capable of supporting liquid water on its surface.


Phys.org - latest science and technology news stories Phys.org internet news portal provides the latest news on science including: Physics, Nanotechnology, Life Sciences, Space Science, Earth Science, Environment, Health and Medicine.

  • Wilkes-Barre campus observatory used to report...
    on November 17, 2020 at 2:16 pm

    Penn State Wilkes-Barre's observatory recently observed an stellar event and shared data with NASA for use on a future mission to an unexplored region of the solar system.

  • Orbits of ancient stars prompt rethink on Milky...
    on November 16, 2020 at 1:49 pm

    Theories on how the Milky Way formed are set to be rewritten following discoveries about the behavior of some of its oldest stars.

  • Solar system formed in less than 200,000 years
    on November 13, 2020 at 1:30 pm

    A long time ago—roughly 4.5 billion years—our sun and solar system formed over the short time span of 200,000 years. That is the conclusion of a group of Lawrence Livermore National Laboratory (LLNL) scientists after looking at isotopes of the element molybdenum found on meteorites.

  • Family tree of the Milky Way deciphered
    on November 13, 2020 at 1:29 pm

    Scientists have known for some time that galaxies can grow by the merging of smaller galaxies, but the ancestry of our own Milky Way galaxy has been a long-standing mystery. Now, an international team of astrophysicists has succeeded in reconstructing the first complete family tree of our home galaxy by analyzing the properties of globular clusters orbiting the Milky Way with artificial intelligence. The work is published in Monthly Notices of the Royal Astronomical Society.

  • Three high-redshift quasars detected by Chandra
    on November 12, 2020 at 2:00 pm

    Using NASA's Chandra spacecraft, astronomers have discovered three new ultraviolet-bright radio-quiet quasars at high redshift and measured their basic X-ray properties. The newly found quasi-stellar object turns out to be the brightest in UV among the known high-redshift radio-quiet quasars. The finding is presented in a paper published November 2 on arXiv.org.