Brown Dwarf

Cosma Home > Communication > Knowledge > Realm > Physical > Universe > Planetary System > Brown Dwarf




Physical Realm
Universe Astronomical Instrument
Galaxy Milky Way, Andromeda
Planetary System Star, Brown Dwarf, Planet, Moon

Solar System Sun
Terrestrial Planet Mercury, Venus, Earth (Moon), Mars
Asteroid Belt Ceres, Vesta
Jovian Planet Jupiter, Saturn, Uranus, Neptune
Trans-Neptunian Object
Kuiper Belt Pluto, Haumea, Makemake
Scattered Disc Eris, Sedna, Planet X
Oort Cloud Etc. Scholz’s Star
Small Body Comet, Centaur, Asteroid


These are organized by a classification scheme developed exclusively for Cosma. More…



Brown dwarf is a substellar object that occupies the mass range between the heaviest gas giant planets and the lightest stars, having masses between approximately 13 to 75–80 times that of Jupiter (MJ), or approximately 2.5×1028 kg to about 1.5×1029 kg. Below this range are the sub-brown dwarfs, and above it are the lightest red dwarfs (M9 V). Brown dwarfs may be fully convective, with no layers or chemical differentiation by depth.

Unlike the stars in the main sequence, brown dwarfs are not massive enough to sustain nuclear fusion of ordinary hydrogen (1H) to helium in their cores. They are, however, thought to fuse deuterium (2H) and to fuse lithium (7Li) if their mass is above a debated threshold of 13 MJ and 65 MJ, respectively. It is also debated whether brown dwarfs would be better defined by their formation processes rather than by their supposed nuclear fusion reactions.

Stars are categorized by spectral class, with brown dwarfs designated as types M, L, T, and Y.[ Despite their name, brown dwarfs are of different colors. Many brown dwarfs would likely appear magenta to the human eye, or possibly orange/red. Brown dwarfs are not very luminous at visible wavelengths.

There are planets known to orbit brown dwarfs: 2M1207b, MOA-2007-BLG-192Lb, and 2MASS J044144b.

At a distance of about 6.5 light years, the nearest known brown dwarf is Luhman 16, a binary system of brown dwarfs discovered in 2013. HR 2562 b is listed as the most-massive known exoplanet (as of December 2017) in NASA’s exoplanet archive, despite having a mass (30±15 MJ) more than twice the 13-Jupiter-mass cutoff between planets and brown dwarfs. — Wikipedia

Encyclopædia Britannica






Crash Course Astronomy (YouTube)

OER Commons: Open Educational Resources


WorldCat, Library of Congress, UPenn Online Books, Open Library

News, NPR Archives






More… - latest science and technology news stories internet news portal provides the latest news on science including: Physics, Nanotechnology, Life Sciences, Space Science, Earth Science, Environment, Health and Medicine.

  • Jupiter could make an ideal dark matter detector
    on April 12, 2021 at 1:42 pm

    So you want to find dark matter, but you don't know where to look. A giant planet might be exactly the kind of particle detector you need! Luckily, our solar system just happens to have a couple of them available, and the biggest and closest is Jupiter. Researchers Rebecca Leane (Stanford) and Tim Linden (Stockholm) released a paper this week describing how the gas giant just might hold the key to finding the elusive dark matter.

  • Caught speeding: Clocking the fastest-spinning...
    on April 7, 2021 at 5:22 pm

    Using data from NASA's Spitzer Space Telescope, scientists have identified the three fastest-spinning brown dwarfs ever found. More massive than most planets but not quite heavy enough to ignite like stars, brown dwarfs are cosmic in-betweeners. And though they aren't as well known as stars and planets to most people, they are thought to number in the billions in our galaxy.

  • New 'eyewear' to deepen the view of NASA's Roman...
    on March 4, 2021 at 1:56 pm

    NASA's Nancy Grace Roman Space Telescope will be able to explore even more cosmic questions, thanks to a new near-infrared filter. The upgrade will allow the observatory to see longer wavelengths of light, opening up exciting new opportunities for discoveries from the edge of our solar system to the farthest reaches of space.

  • Harnessing the power of AI to understand warm...
    on January 28, 2021 at 6:37 pm

    The study of warm dense matter helps us understand what is going on inside giant planets, brown dwarfs, and neutron stars. However, this state of matter, which exhibits properties of both solids and plasmas, does not occur naturally on Earth. It can be produced artificially in the lab using large X-ray experiments, albeit only at a small scale and for short periods of time. Theoretical and numerical models are essential to evaluate these experiments, which are impossible to interpret without […]

  • NASA's Roman mission will probe galaxy's core for...
    on January 25, 2021 at 8:25 pm

    When it launches in the mid-2020s, NASA's Nancy Grace Roman Space Telescope will explore an expansive range of infrared astrophysics topics. One eagerly anticipated survey will use a gravitational effect called microlensing to reveal thousands of worlds that are similar to the planets in our solar system. Now, a new study shows that the same survey will also unveil more extreme planets and planet-like bodies in the heart of the Milky Way galaxy, thanks to their gravitational tug on the stars […]