Star

Cosma Home > Communication > Knowledge > Realm > Physical > Universe > Star

Spotlight


Related

Subjects
Physical Universe (Mass, Force)
Galaxy, Star, Solar System, Planet, Moon, Asteroid, Comet
Mercury, Venus, Earth (Moon), Mars (3D), Jupiter, Saturn, Uranus, Neptune, Pluto

Resources

These are organized by a classification scheme developed exclusively for Cosma. More…

General

Portal

Stars (ScienceZine), StarTrax-NGB: The HEASARC Browse

Dictionary

star : a self-luminous gaseous spheroidal celestial body of great mass which produces energy by means of nuclear fusion reactions — Webster

Oxford, OneLook, Free Dictionary, Wiktionary, InfoPlease, Word Reference, Urban Dictionary

Thesaurus

Roget’s II (Thesaurus.com), Merriam-Webster Thesaurus, Visuwords

Encyclopedia

Staris a luminous sphere of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the stars in the Universe, including all stars outside our galaxy, the Milky Way, are invisible to the naked eye from Earth. Indeed, most are invisible from Earth even through the most powerful telescopes.

For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star’s interior and then radiates into outer space. Almost all naturally occurring elements heavier than helium are created by stellar nucleosynthesis during the star’s lifetime, and for some stars by supernova nucleosynthesis when it explodes. Near the end of its life, a star can also contain degenerate matter. Astronomers can determine the mass, age, metallicity (chemical composition), and many other properties of a star by observing its motion through space, its luminosity, and spectrum respectively. The total mass of a star is the main factor that determines its evolution and eventual fate. Other characteristics of a star, including diameter and temperature, change over its life, while the star’s environment affects its rotation and movement. A plot of the temperature of many stars against their luminosities produces a plot known as a Hertzsprung–Russell diagram (H–R diagram). Plotting a particular star on that diagram allows the age and evolutionary state of that star to be determined.

A star’s life begins with the gravitational collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium and trace amounts of heavier elements. When the stellar core is sufficiently dense, hydrogen becomes steadily converted into helium through nuclear fusion, releasing energy in the process. The remainder of the star’s interior carries energy away from the core through a combination of radiative and convective heat transfer processes. The star’s internal pressure prevents it from collapsing further under its own gravity. A star with mass greater than 0.4 times the Sun’s will expand to become a red giant when the hydrogen fuel in its core is exhausted. In some cases, it will fuse heavier elements at the core or in shells around the core. As the star expands it throws a part of its mass, enriched with those heavier elements, into the interstellar environment, to be recycled later as new stars. Meanwhile, the core becomes a stellar remnant: a white dwarf, a neutron star, or if it is sufficiently massive a black hole.

Binary and multi-star systems consist of two or more stars that are gravitationally bound and generally move around each other in stable orbits. When two such stars have a relatively close orbit, their gravitational interaction can have a significant impact on their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy. — Wikipedia

David Darling’s Internet Encyclopedia of Science, Britannica, Columbia (Infoplease)

Introduction


Guide to Stars & Galaxies (Telescope.org)

Directory

DMOZ Open Directory Project (AOL)

Search

WolframAlpha, DuckDuckGo

Preservation

History

History of Stars (Universe Today)

Quotation

Quotations Page Bartlett’s

Library

WorldCat, Library of Congress, UPenn Online Books, Open Library

Participation

Education

Globio Glossopedia, Stars

Course

OER Commons: Open Educational Resources
Open Education Consortium

Community

Event

Conference Alerts Worldwide (Conal)

Blog

WordPress

News

Science Daily
NPR Archives

Book

ISBNdb

Government

Document

USA.gov

returntotop

More…

Science Daily